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ABSTRACT 

The time and frequency spreading of a shallow water acoustic channel can be **aJ 
characterized by its scattering function. In order to exploit some of the time f/^ 
delay regularities in the acoustic channel, the scattering function is calculated _ 
using a Pekeris waveguide model. The correlator loss, which is a measure of the V^ 
amount of signal spreading caused by the channel, is calculated as a function ^». 
of range and depth for three well known classes of signals used in active sonar. ^"* 
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Scattering Function of Shallow Water Channels 

EXECUTIVE SUMMARY 

Quieter submarines, as a result of improved noise and signature reduction, operating in 
littoral environments pose a challenging ASW detection problem for active sonar. Regard- 
less of the quality of the sensors used and the skill of the sonar operators, the environment 
will still impose limitations on the sonar system's detection ability. One immediate prob- 
lem is the lack of detailed knowledge of the environment (as well as the target and other 
operational factors) that can be used to develop suitable new algorithms. However, even 
if this knowledge were available, the amount of processing required would be unlikely to 
be cost effective. 

Accepting that the complexity of the ocean environment can limit the level of acoustical 
information that can be sensed and usefully exploited, it is then reasonable, at least as a 
first step, to model the undersea acoustic channel as a random time-varying linear filter. 
For example, the scattering function, which is a measure of the second order statistics of 
the random time-varying filter, can be used to quantify the channel and hence ultimately 
sonar system performance. 

In this paper the time and frequency spreading of a shallow water acoustic channel 
is characterized by its scattering function. In particular, its time spreading structure is 
calculated by using the Pekeris waveguide model. The Pekeris waveguide with a uniform 
sound speed profile is an attractive model from the viewpoint that only a minimal number 
of parameters are needed, but is sufficiently complex to exhibit many of the salient features 
observed in actual waveguides, at least to first order. By using such a model it is shown that 
signals with large time-bandwidth products are severely distorted by time and frequency 
dispersive channels. Although large time-bandwidth product signals are generally desirable 
for detection, clutter reduction and range resolution, it is clear that when operating in a 
dispersive channel these signals are of limited value when processed using conventional 
techniques such as simple matched filtering. 
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1    Introduction 

Shallow water provides a challenge for designers of active sonar systems due to its fad- 
ing multipath structure. The time and frequency spreading caused by the channel can 
adversely distort the transmitted signal and hence result in a degradation in sonar perfor- 
mance. In this paper, the limits of coherent pocessing (in the form of replica correlation or 
its matched filter equivalent), due to pulse distortion caused by the underwater medium, 
will be investigated. A simple and reasonably adequate model of an undersea acoustic 
channel is that of a random linear time-varying filter[1, 2, 3, 4]. The random nature is 
due to a lack of detailed knowledge of the acoustic environment (sound speed profile, 
bottom properties, surface motion etc) and the associated system parameters such as the 
geometry of the transmitter, receiver and target. Therefore, one is dealing with a complex 
dynamical system which warrants a stochastic description. For example, the scattering 
function which is a measure of the second order statistics of the random time-varying filter 
will be used to quantify the channel. This, however, is not to suggest that deterministic 
methods, such as wave equation solutions, are not useful. In this paper it is assumed that 
any regularities, as observed in an averaged sense, can be described by the deterministic 
wave equation. In particular, the Pekeris model will be used to account for the time delay 
structure of the scattering function. 

The remainder of this paper is organized as follows: Section 2 provides the background 
for the scattering function description of the channel. Although the theory can be applied 
to the sonar detection and estimation problem in general, this paper will concentrate on 
one way transmission so that complications from target scattering need not be introduced. 
Section 3 gives details of the Pekeris waveguide. Section 4 applies the results of the previous 
sections to (a) a fully analytical case and (b) numerical cases for three classes of well known 
active sonar transmissions. Finally, section 5 concludes the paper. 

2    Scattering function 

Consider an active sonar system in which the transmitter and receiver are in separate 
locations. Let the transmitted signal be given by s (t). By modelling the channel as a 
time-varying linear filter, the received signal r (t) can be written as 

r(t) = Jh(T,t)s(t-T)dT + n(t), (1) 

where h (T, t) is the channel impulse response at time t for a given delay r and n (t) is a noise 
term representing sea and thermal noise. For the purposes of this paper the ambient noise 
will not be discussed any further. The random impulse response h (r, t) can considered as a 
member of an ensemble which describes the multipath and Doppler spread of the channel, 
where T, for a fixed t, is a measure of the time delay spread a signal undergoes, and for 
a fixed r, t indicates how rapidly the channel is changing with time, i.e., the amount 
of Doppler spreading. Usually, the channel response is characterized principally by its 
first and second moments, although higher order moments have been considered.   The 
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first moment is taken to be zero due to the uncertainty in the phase, leaving the second 
moment, i.e., the covariance function, to carry the bulk of the statistical information about 
the channel. 

In order to proceed further in the simplest way, two common assumptions are made. 
The first is that the channel response is a stationary random process for a given delay 
(range) interval1. This implies that the covariance function depends only on the time 
difference between measurements of the channel response. The second assumes that re- 
flection or scattering of the channel is uncorrelated as a function of delay (range). These 
two assumptions then enable the covariance function to be written as 

E{h(Tl,ti),h*(^t2)} = K(TUAt)S(Ti-T2)t (2) 

where E { } denotes ensemble average, At = h - t2, and K (T, At) is a two variable 
function dependent on the properties of the channel. From this two variable function it is 
useful to define the scattering function, a (r, /), such that 

/oo 
a(r,f)^fAtdf. (3) 

-00 

Now assume that the receiver processes the received signal using a matched filter or 
correlator of the form 

y(ri4) = Jr (t) s* (t - T) e-SWdt, (4) 

where T and cj> are the relative delay and Doppler of the matched filter respectively. By 
using Eqs. (1) and (2) in (4), the mean power output of this matched filter is 

^{|y(r^)|2} = //a(A,/)|x(A-r,/-^)|2d/rfA, (5) 

where 

x(T,<f>) = j s (t) s* (t - T) e-'^dt (6) 

is the ambiguity function of the pulse s (t) and may be interpreted as the output of the 
matched filter for a received signal propagating through an ideal distortionless medium. 
Then the scattering function can be thought of as a two dimensional filter modifying the 
ideal channel matched filter response. Note that the ideal channel (i.e., a single path with 
no frequency spreading) is represented by a (T, f) = 6 (r) S (/). 

Consider a time varying multipath channel described by its scattering function. A 
measure of how much the channel spreads the transmitted pulse can quantified by the 
correlator loss, defined as 

CL = 10 log10CF), (7) 

where the loss function, F, is given by 

j. g{w>i2} (8) F-    lx<o,o)|>   ' (8) 

x
This is equivalent to saying that the channel response is uncorrelated as a function of Doppler shift. 
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This is simply comparing the mean response of a time varying multipath channel to the 
ideal channel. It is convenient to normalize the scattering function by the quantity 

// 
a(\,f)dfd\ (9) 

and also normalize the waveform, s (t), to have unit energy so that x (0,0) = 1. The loss 
function then becomes 

F__na{\f)\x{Kf)?dfd\ 
SIa(X,f)dfdX        ■ [iö) 

Since the scattering function can be determined for any range and depth of interest, the 
normalization ensures the loss function is independent of the absolute signal level at any 
given position. 

The main purpose of the loss function is to give an indication of how the energy of the 
transmitted signal is distributed by the channel. For example, values of the loss function 
close to one indicate the existence of a dominant path, while values much less than one 
suggest a number of different possibilites. It could be that the channel supports multiple 
paths or the channel distorts the signal by other means (e.g., frequency spreading) or 
a combination of both. The loss function by itself does not give enough information to 
distinguish between these possibilities. 

It is clear that having some knowledge of the scattering function is essential in under- 
standing and perhaps exploiting the effects of the environment on active sonar transmis- 
sions. To this end, assume that the scattering function can be written as 

o{T,<t>) = P{r)SD{<l>), (11) 

where P (r) is the delay power profile and SD {<t>) is the Doppler spread profile. Fur- 
thermore, the delay power profile is assumed calculable from the solutions of the wave 
equation subject to appropriate boundary condtions whereas the Doppler profile, without 
any apriori knowledge, is assumed to take the form 

SD (4>) =    , exp 
y/2*B2D 

-IP BDJ 
(12) 

where BD is the variance of the Doppler spread. Note that the assumed separability of 
the scattering function into the delay power profile and the Doppler spread profile implies 
that the mechanisms responsible for Doppler spreading are statistically independent of 
the range interval under observation. This assumption is also motivated by how one 
would go about measuring the scattering function without sophisticated signal processing. 
To see this, consider a time varying multipath channel. The delay power profile can be 
determined by probing the channel with a short pulse and measuring the average echo 
power as a function of delay. The Doppler profile can be measured by CW (continuous 
wave) testing of the channel to give the frequency spectrum of the average received power. 

3    Pekeris waveguide 

In this section the delay power profile will be calculated by using the Pekeris waveguide[5] 
to model the shallow water channel. The geometry of the channel is shown in Fig. 1. The 
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Pekeris model is chosen because it exhibits many of the characteristics of real waveguides 
without being overly complicated mathematically. The channel is completely specified by 
the depth of water, H, the sound speed profiles of the water and bottom, c(z) and cb{z), 
the densities of the water and bottom, p and pb, and a pressure release at the air-water 
interface. In fact closed form solutions can be found for special cases of interest [6]. The 
pressure time series as a function of range and depth for an arbitrary source waveform[7] 
can be expressed in terms of normal modes2, i.e., 

p(t,r,*) = f (-J7c)^2i>m(zo)^m(z)H^ (kmr) S (/) c**'*4f, (13) 
J m 

where S (/) is the Fourier spectrum of the transmitted waveform, s (t), ipm(z) is the mth 
normal mode eigenfunction as a function of depth, H^' is a Hankel function, and km is 
the horizontal wavenumber which is related to the sound speed profile, c(z), the source 
frequency, /, and vertical wavenumber, 7m, by 

kl(z)+ti = (2-^)2. (14) \c(z)J 

In order to probe the channel's multipath structure, a very broadband source should be 
used. In doing so, the delay power profile can be estimated from Eq.(13) as 

P(T) = l £ ^*»(*b)^» W«,"P,r,(T4*,)"*mr",r/4l4f (15) 

where the Hankel function has been replaced by the exponential in the long range ap- 
proximation, t0 is beginning of the observation time window (or is the time when P (0) is 
maximum) and r is time delay relative to *o- 

Two cases with uniform sound speed profiles will be considered: (i) rigid bottom and 
(ii) fluid bottom. The rigid bottom case can be solved exactly and the delay power profile 
is given by 

oo     4 1 

j,(T) = £EriV(7'+*,-7im)' (16) 

where 

CTim 

= 

y/r2 + (z -zo + 2mH)2 

cr-im V'r2 + (z + ZQ + 2mH)2 

CT3m \jr2 + (z + ZQ - 2(m + 1)H)2 

=    Jr* + (z-z0-2(m + l)H)2. (17) 

The derivation of this result is given in the Appendix. 
2Note that representations of solutions to the wave equation other than normal modes can be used. It 

turns out the normal mode method is especially convenient for calculating the sound field as a function of 
range and depth. 
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For the fluid bottom case the delay power profile is calculated by evaluating Eq.(15) nu- 
merically because there is no simple analytic solution available. The modal eigenfunctions 
for the water column are given by 

if)m(z) = Amsin (jmz), (18) 

where 

A2
m = 27m [7mfr - cos (jmH) sin (^mH) - b2 sin2 (jmH) tan (jmH)] (19) 

is a normalization constant3 and b = p/pb- The corresponding eigenvalues are obtained 
by solving 

tan(7mg) = -V(,?:*^, (20) 

where 

-*t*p-k- (21) 

Note that the existence of analytic solutions is valuable in that they reveal physical 
insight to the problem and provide a check, in limiting cases, on numerical solutions to 
problems where exact solutions are either impossible or extremely difficult to obtain. This 
is the role of the rigid bottom case and it is clear that in going from the rigid bottom case 
to the fluid bottom case the computational difficulties have greatly increased. 

4    Applications 

4.1    Analytic example 

Consider a Gaussian LFM signal transmitted through an ideal rigid bottom shallow water 
channel. A complete analytical expression of the loss function is available in this case. Let 
the transmitted signal have a Gaussian envelope of the form 

,(*)=(^)4H~(£)1exp i2 

jnW- (22) 

where T is the effective duration of the pulse and W is frequency sweep width (the CW 
case is obtained by setting W — 0). By using Eq.(6), the ambiguity function is[4], 

lx(T,<£)|2 = exp (£)2    exp[-7r2(#r-WT)2]. (23) 

The wave solutions of the depth dependent part of the Helmholtz equation form an orthonormal set. 
The normalization constant is obtained by having these solutions satisfy the boundary and orthogonality 
conditions. 
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The loss function of Eq.(lO) for the rigid bottom channel ( via Eqs. (11), (12) and (16) ) 
is 

A=T E Er^ /°° l*(AW)|2exp \-\ (■£-) F = d<f>,        (24) 

where Arjm = Tjm — to is the excess delay and the normalization factor is given by 

oo     4 

"=E£ 
,=Oi=l \CTim) 

1- 

For the Gaussian pulse, the loss function becomes 

EE 
Ny/l+2TT2B2

DT
2m=0i=l (CTim) 

exp 
Ar? 
T2 

exp 
7r2W2Ar? " tm 

(l + 27r2Bf,T2) 

(25) 

(26) 

This example explicitly shows how a signal cannot be transmitted with an arbitrarily large 
pulse duration and/or bandwidth in a dispersive channel without incurring significant 
signal spreading. More specifically, F <SC 1 if 

T   >   Tc = 

W   >   Bc = 

y/2nBD 

1 

and/or 

TTAT 
(27) 

where Ar is the average excess delay, and Tc and Bc denote the coherence time and 
coherence bandwidth respectively. Conversely, the dispersive effects of the channel can 
be considered unimportant if the sonar waveform's duration and bandwidth are operated 
within their coherence limits, though this might not be possible in practice. Note that 
these conclusions hold in general though the expressions for Tc and Bc will differ according 
to the channel and waveforms under consideration. 

Figure 2 shows an example of the correlator loss as a function of range and depth 
assuming a source depth of 10 m and a rigid bottom of depth 100 m. Fig. 3(a) gives an 
example of the Gaussian LFM ambiguity function. It can be seen from Fig. 2 that the 
loss function decreases with range and is largely insensitive to changes in depth. When 
the source and receiver are relatively close to each other the direct path is dominant as the 
other paths have longer path lengths and are weaker in strength (recall that the amplitude 
of each path is inversely proportional to the path length). This means that the loss function 
should be near unity if, for the moment, Doppler spreading is neglected. As the range 
increases, the direct path becomes less dominant relative to the other paths and the spread 
of the delay power profile becomes larger, resulting in a smaller value for the loss function. 
At very long ranges, all the paths are nearly comparable as the path difference between 
paths falls off inversely with range (see Eq. (17)) and hence the loss function decreases 
slowly with range. This is analogous to the well known phenomenon of energy spreading 
in a shallow water channel, i.e., the transition from spherical to cylindrical spreading. 

An order of magnitude estimate of the loss function or the correlator loss can be 
obtained by considering the following artificial, but instructive, example. Assume that 
the received signal from a multipath channel can be represented by a sum of time delayed 
replicas of the transmitted waveform and each path is roughly equivalent.   Then the 
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received signal can written as r (t) = l/y/N^2k=i <f>k (*) where N is the number of paths 
and <j>k{t) is the kth delayed replica of the transmitted waveform. The correlator output 
for the received waveform has a series of peaks with amplitude ~ l/y/N. This gives a 
correlator loss of CL ~ -101og10 N. For example, 10 to 100 paths results in a correlator 
loss of —10 to —20 dB, in broad agreement with the results shown in Fig. 2. Also notice 
that the correlator loss for the LFM signal is worse than that of CW pulse. This is not 
unexpected since the larger bandwidth of the LFM signal allows it to resolve a greater 
number of paths. 

4.2    Numerical examples 

In this section the correlator loss as a function of range and depth will be calculated for 
both the rigid bottom and fluid bottom cases using three well known classes of sonar 
signals, as characterized by their ambiguity functions[3, 8]. They are the (i) ridge (e.g., 
rectangular CW pulse), (ii) sheared ridge (e.g., rectangular LFM pulse) and (iii) thumbtack 
(e.g., pseudo-random noise) ambiguity functions given respectively by 

\x(r,<t>)\2 

\x(r,<f>)f 

\x{rA)\2 

T-\T\ sin7T0(T-|r|) i2 

, \T\<T 

■,2 

T TT(/)(T-\T\) 

T-\T\ sin7rC(r-|rl) 
T        TTC(T-|T|)   J   ' '  '- 

T-\T\ simcrW sinTT^(T- ITI)""
2 

TTTW 

+ 
*<HT-\T\) J 

TW 

(28) 

(29) 

(30) 

where ( = 4> — WT/T and the last equation (representing the thumbtack ambiguity func- 
tion) assumes TW » 1. The ambiguity functions are zero for \T\ >T and the last term of 
the thumbtack ambiguity function is zero when \(f>\ >W. The delay-Doppler characteris- 
tics of these ambiguity functions are illustrated in Figs. 3(b), 3(c) and 3(d) respectively. 
The following parameter set will be used for the examples: 

Pulse duration, T = 0.5 s 

Frequency sweep width, W = 0 for CW and W = 200 Hz for others 

Observation window length of 2 s 

Centre frequency, fc = 1000 Hz 

Frequency window, 800 - 1200 Hz 

Sampling frequency, /s = 4096 Hz 

Source depth, ZQ = 10 m 

Channel depth, H = 100 m 
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Sound speed in water, c = 1500 m/s 

Density of water, p = 1000 kg/m3 

Sound speed of "typical" bottom, cb = 1600 m/s 

Density of "typical" bottom, pb = 1500 kg/m3 

Sound speed of low reflective bottom, cb = 1510 m/s 

Density of low reflective bottom, pb = 1010 kg/m3 

Doppler spread, BD = 1 HZ 

Note that the Doppler spread4 is calculated by assuming a range rate spreading of v ~ 2 
knot which gives a Doppler shift of about 1.4 Hz. So BD = 1 Hz is taken as the nominal 

value. 

Closed form expressions of the loss function for the rigid bottom case using the ridge 
and thumbtack ambiguity functions can be calculated from Eqs.(28), (30) and (24). There 
is no simple form for the sheared ridge ambiguity function but a relatively simple upper 
bound can be obtained. Their expressions are given as follows: For the ridge ambiguity 

function, 
1 oo     4 -I 

^sab^S^'^'1 (31) 

while for sheared ridge 

1  {WATimV 
f<Jw^m?0S<^F/<ATto)exp "2 V  BDT )■ 

(32) 

and for the thumbtack ambiguity function 

F = 

where 

1 ~   *    _1      ,,.     > {sm2(*WATim) T , Bpr\ ., 

Ny/2irBDT 

f(T) = l1-^      if[T|<T (34) J v '      I  0 otherwise, 

3 = Äerfö" 1-e^h), (35) 
2BD 

W 

k = Tf (Arim) and erf(-) is the error function5.   The loss functions of the three signal 
types are shown in Figs. 4, 5 and 6 as a function of range and depth. 

"The Doppler shift is given by <j> = 2fcv/c ~ 0.7 (j^) (5^) Hz. 
5The error function is defined as erf(x) = -^ f* exp (-*2) dt. 
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Unfortunately, no closed form expressions are available for the fluid bottom case. As a 
result the scattering and loss functions are evaluated numerically for each target range and 
depth of interest. An example of the scattering function for a range of 10 km and a depth of 
10 m is shown in Fig. 7. The correlator loss for the three signal types of a "typical" Pekeris 
waveguide is shown in Figs. 8 to 10. Figures 11 to 13 show the case when the waveguide 
has a less reflective bottom. It can be seen that the correlator loss, a quantitative measure 
of signal spreading, decreases in going from a fully reflective bottom to a less reflective one 
for all signal types. Note that the number of paths increases when approaching the rigid 
bottom limit. In such cases the transmitted signal suffers more distortion since more paths 
contribute to the interference. At the same time, the superposition of a large number of 
paths tends to have an averaging or smoothing effect on the correlator loss (see Eq.(10)) 
as a function of range and depth. Furthermore, the signal distortion increases with range 
since the number of significant paths for a given arrival point should also increase with 
range. Finally, since the channel under consideration is predominantly a delay spread one, 
signals with large time-bandwidth products, such as LFM and PRN, will suffer the most 
degradation6 (see Eq.(27)). 

5    Conclusions 

The scattering function provides a useful statistical characterization of acoustic undersea 
channels in active sonar applications. In particular, the shallow water channel can be 
modelled by the Pekeris waveguide. The Pekeris waveguide with a uniform sound speed 
profile is an attractive model from the point of view of needing only few parameters but 
is otherwise sufficiently complex to exhibit many of the salient features observed in actual 
waveguides, at least to first order. By using such a model it was shown that signals with 
large time-bandwidth products are severely distorted by dispersive channels. Although 
large time-bandwidth product signals are generally desirable for detection, clutter reduc- 
tion and range resolution, it is clear that when operating in a channel with time and 
frequency spreading these signals are of limited value when processed using conventional 
techniques such as simple matched filtering. 
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6Notice that for the two CW cases (fluid bottom) in Figs. 8 and 11, there appears a ridge in the 
correlator loss function for depths near the bottom of the channel. This is caused by the consistently 
nonzero value of the modal amplitudes near the bottom of the waveguide (see Figs. 5.3 and 5.15 of 
Ref.[6]). For broadband signals, the sum over a large number of frequency components is expected to wash 
out this effect. A similar argument applies for channels with highly reflective bottoms where the existence 
of a larger number of trapped propagating modes can also cause a cancellation. 



DSTO-TR-0644 

6    Appendix 

For an isospeed rigid bottom channel the modal eigenvalues and eigenfunctions in Eq.(13) 

are given by 

7m=(m+inform = 0,1,2,... (36) 

feW = V 77 sin (7m*) , (37) 
V ±1 

respectively. By using the following results 

7m = -7m-l (38) 

oo 

m=0 m=-oo 

Yl2sm^mz0)sm(lmz)HP(kmr)=   £   sm{jmz0)sm(imz) H{
0 > {kmr)        (39) 

/oo 
S(f)e>2*'t4f = s(t) (41) 

-oo 

Eq.(13) becomes 

,-i7mVc2T2-r2 
oo /.(JO g-J'ImVt-i / 

p(t,r,z)   =   —   Y,   sin(7mz0)sin(7mz) J_^ s(t-r) 2 _ =-dr 
m=—oo 

_    _c_ f°°    s(t-r)       y, c    f°°    s(t    T'      y^   jerrmfi + ei7m6 _ gi7m?3 _ e^7"^4) dr, 
7-00 \/c2r2 - r2 ^rrL^ *■ 

(42) 

where 

£i   =   z — ZQ — vcV2 — r 

£2   =   —Z + ZQ — \/C
2
T

2
 — r2 

£3   =   z + ZQ — \JCIT
2
 — r2 

&   =   -z-zo- Vc2r2 - r2. (43) 

The above expression can be furthered simplified by using 

oo oo 

j-   ei2*"4 =    Y,   TS(t-mT) (44) 
m=—oo 

-1 

S[f(xi)] = Y 
df_ 

dz 
6(x-Xi),forf(xi) = 0. (45) 

The result, after some manipulation, is 

p(t,r,,)=   f   {•ÜZS)_£IL^I}, (46) 
m=—oo 

10 
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where 

CTa   =   y/r2 + (z - z0 + 2mH)2 

crb   =   \]r2 + (z + z0 + 2mHf (47) 

or in the more commonly used form 

p(*,r,*) = £(-irx;v^T-(*-nm) 
m=0 i=l   ^CTim> 

(48) 

where Tjm axe given by Eq.(17).  The result of Eq.(16) easily follows from this by using 
s(t) = 6(t). 

11 
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Figure 1: Geometry of the Pekeris waveguide. 
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Figure 2: Correlator loss of (a) a Gaussian CW pulse and (b) its corresponding contour 
plot. Similarly for (c) and (d) but for a Gaussian LFM pulse. The shallow water channel 
is isospeed with a rigid bottom. 
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Figure 3: Ambiguity functions for (a) Gaussian LFM, (b) rectangular CW, (c) rectangular 
LFM, and (d) PRN (pseudo-random noise). These are shown using T = 0.5 s and W = 40 
Hz (W = 0 for CW) in order to accentuate their features. 
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Figure 4: The correlator loss of a CW pulse (T = 0.5 s) in an isospeed channel with a 
rigid bottom. The contour plot shows four levels: CL = -9.5 dB (solid), -10 dB (dashed), 
-10.5 dB (dotted) and -11 dB (dashdot). 
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Figure 5: The correlator loss of a LFM pulse (T = 0.5 s and W = 200 Hz) in an isospeed 
channel with a rigid bottom.   The contour plot shows four levels: CL = —17 dB 
-18 dB (dashed), -18.5 dB (dotted) and -19 dB (dashdot). 
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Figure 6: The correlator loss of a PRN pulse (T = 0.5 s and W = 200 Hz) in an isospeed 
channel with a rigid bottom. The contour plot shows four levels: CL = —18 dB (solid), 
-18.5 dB (dashed), -19 dB (dotted) and -19.5 dB (dashdot). 
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Figure 7: (a) Scattering function and (b) its Delay Power Profile for a target range, r = 10 
km, and depth, z = 50 m. The channel is isospeed with a fluid bottom (q, = 1600 m/s and 
pb = 1500 kg/m3). 
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Figure 8: The correlator loss of a CW pulse (T = 0.5 s) in an isospeed channel with a 
fluid bottom (ct, = 1600 m/s and pb = 1500 kg/m3). The contour plot shows four levels: 
CL = -3.2 dB (solid), -3.8 dB (dashed), -4.4 dB (dashdot) and -5 dB (dotted). 
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Figure 9: The correlator loss of a LFM pulse (T = 0.5 s and W = 200 Hz) in an isospeed 
channel with a fluid bottom (c\, = 1600 m/s and p\, = 1500 kg/m*). The contour plot 
shows three levels: CL = —10 dB (solid), —12 dB (dashed), and —14 dB (dotted). 
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Figure 10: The correlator loss of a PRN pulse (T = 0.5 s and W = 200 Hz) in an isospeed 
channel with a fluid bottom (cb = 1600 m/s and pb = 1500 kg/m3). The contour plot 
shows three levels: CL = -10 dB (solid), -12 dB (dashed), and -14 dB (dotted). 
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Figure 11: The correlator loss of a CW pulse (T = 0.5 s) in an isospeed channel with a 
fluid bottom (cb = 1510 m/s and pb = 1010 kg/m3). The contour plot shows two levels: 
CL = -2.2 dB (solid) and -2.4 dB (dashed). 
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Figure 12: The correlator loss of a LFM pulse (T = 0.5 s and W = 200 Hz) in an isospeed 
channel with a fluid bottom (cb = 1510 m/s and pb = 1010 kg/m3). The contour plot 
shows three levels: CL = —5 dB (solid), —7 dB (dashed), and —9 dB (dotted). 
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PRN pulse - Fluid bottom 
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Figure 13: The correlator loss of a PRN pulse (T = 0.5 s and W = 200 Hz) in an isospeed 
channel with a fluid bottom (ci, = 1510 m/s and pi, = 1010 kg/mz). The contour plot 
shows three levels: CL = —5 dB (solid), —7 dB (dashed), and —9 dB (dotted). 
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